
I \T~~
D_AO 34 466 WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER F/G 9/2AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS.(U)

NOV 76 6 KEDEM DAAG 2 9 — 7 5—C ~~oo 2IeUNCLASSIFIED MRC— T S R— 1697 NL

I~,I

END
DATE

flLMEO.

~~~ - 7-7



MRC Technical Summary Report # 1697

c
~~~~ 

AUTOMA TI C DIFFERENTIATION OF
COMPUTER PRO GRAMS

; G. Kedem

Mathe matics Resea rch Center
Universit y of Wisconsin—Ma dison
610 Walnut St reet
Madison . Wiscons in 53106

~ ove mber 1976 . 7

Receiv ed March 3 , 1976 ,,‘ / ‘

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office
P .O. Box 12211
Research Triangle Park
North Carolina 27709

F’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ . ~~~~~~~~~~ , .

UNIVERS I TY OF WISCONSIN - MADISON
MATHEMATICS RES EARCH CENTER

;dJT oM;~TIc DIFFERENTIATIO N OF COMPUTER PROGRAMS

C . Kedem

Technical Summary Report # 1697
I \ ovem~ier 1976

ABS TRACT

A method for the au~omatic differentiation of computer functions

~s~ broutines) written in a high level language is discussed .

A theory is developed to show that most functions that arise

j : . appli ‘ it ior~s can be differentiated automatically. It is shown how

one :a:~ ta ke a FORT RJ\~J function (subroutine) and , with the aid of a

pro :or~p i f t r, o :t ~1in a FORT PJ~~ s’i :routine that compute s the original

fu:~otion ai~d its desired derivati ves .

Implementation of two types of differentiation is described ; ~~• . f .

(1) A’utomatic Taylor series expansion of FORTRAN programs . ~~~~~ . ‘

12) Automatic Gradient calculation of FORTRA N functions .

r~j~iaioi~ tv _ ••_

,~II ~~~ ~~~~
DOG ~ se~ .s 0

AMS(MOS) subject classification : 68 . 00, 68A15 0

Key words: Factorable functions , Automatic differentiation

1Nork Unit No: 7 (Numerical Analysis) •~~~io~ &y*flhtItl T~
tOOE~

~ ~~~~~~~ ~~~ .VECI&L

Sponsored by the United Sta te s Army under Contract No. DAAG 29-7 5-C-0024 .

—

F

I H~LT ; ‘ r~
)
~ (1[(O ~ f t (] i f t (;½

~’1~

(fI . ‘(~~

In~~c ~.

T~. ~~,Y.i ~~~ :~ ‘ .~~
. ~r~~’ ‘ . Y . 1 : ’ O~iS O~t1p .t f ~ ‘ (: r r J f t i V e S is not a new

~~~~~~~ ~~~~ ~.tn ~r : ‘~~. S  ~~~ ~ •. is I .  ~~ ‘
~~~~~~~ ‘ it v.~i s  used to com —

~~te ~~ ~~ : t ’ n . 1L~~~5 :;,‘ s o~ 1’ . y b ! 5. ries expdns ion by J . R. Airy

~~~~~ [ ‘~~• ~~~ ~~ & p ~~7 
‘‘ ‘~ r -~’~~~; :o.’ured many times . In 1964

R. F. Moore 1~1 sb~ow~~d ho~ o~ e could i ~tor~at ic .ai1y get Taylor series expan-

sions of FOVI RA\- l ike expressions to solve iait i~ l va lue problems . See [1,2,

~~, 7 , 8 ,1Oj . The automarJ~ computat ion of partia l derivatives was implemented

in l~.~67 i.y A . Reiter and J . Gray [11,111 and later by J . Wertz [12], D. Kuba and

L. B. Rail  [131. and R. E. Pu~ l [9] . These are programs known to us but the

list is probably not comp 1
~ete .

This paper suggests a way to extend the process to fun•~tions that can

be written in an algebraic computer language (FORT RA N , ALGOL and so on)

namely:  piecewise factorable funct ion s .

T he theor et ical  part of this  paper was written because we heard too often

the statement :  ‘O h , I believe you can d i f fe ren t i a t e  a rb i t ra ry  expression s , but

FORTR A N programs ?!‘ . We then describe the implementation of two types of

d i f fe ren t ia t ion : Taylor series expansion ( TAYLOR) and gradient  com putation

( G R A D I EN T ) ,  via  the use of the A U G M E N T  precompiler 13 1.

The method described has a few dist inct  advan tages :

1) AU O M E N T  is a high ly  por tab~e precompiler , therefore with l i t t le

work it  can be implemented on a lmost  any system.
Sponsored by the  Un i t e d  States Army under  Contract  No . DAA GZ 9-7 5- C-0024 .

~~L . . 
_ _ _  _ _ _ _  _ _ _



~
) The packages j iv e’ ., very easy way to interface with any FOVI PLU

program .

~
) A ny other type of ( :lffere ritl tt o :1 can be implemented edsily (about

two weeks of work).

4)  Functions and s inro lJ t ines c a n  be ‘ d i f f e r e n t i a t e d  s epa ra t e ly.

incorporated into larger syste ms and used ~J S  par~. of t he library .

1.1. T heory.

Let us look at computer  programs for the evaluat ion of numerical

f u n c t i o n s  t ha t  ar ise in app l ica t ions .

We use the FORTR.A N language but the following discussion

app lies to a n y  other h igh level algebraic  l anguage . We ignore the  fact

t h a t  computers  don t really work with  real numbers  and  that library  f un c t i o n s

like SIN and COS compute  only approximations to funct ions  we have in mind .

We look at FORTRA N subrout ines  and func t ions  that  evaluate  some

rn ithematj ca l func t ions .  We assume  that  no I/o is involved and tha t  ‘ random

nj r n h e rs ’ are not used . All such routines have a few fea ture s in common:

D For every set of va lues  of the formal arguments  there is a fixed.

f in i t e  sequence of ins t ruct ions executed ( provided that these values  are with-

in the domain of definition of the function and we use a correct subroutine’ .

2) If we regard DO loops, logical statements and GOTO statements only

as a convenient tool for defining sequences of instructions, we see that all

suc h sequences consist of arithmetic opera tions and calls to library function s .

3) At each step we use only previously defined values.

4) Most of the function s we compute are piecewise differentiable or

actua lly piecewise analytic .

-2 -

-——

~

—-.—--

~

--

~ 

~ ————~~~ -~~~ ‘ ~~~~ ~~~~~~
—

-~



In order to m ake the analysis more precise we use an abstract model

for algebraic computer languages , namely the factorable function s . But we

will try to point Out the analogy between the model and computer programs

and what the statements about factorable functions mean when we translate

them to facts about computer programs .

We will use subscripts to denote sequences and superscripts to de-

note components of a vector , f . is the ith element in a sequence and

is the j th component of a vector t

1. 2. Definitions.

Let ~
‘ be a finite set of real functions of one or more real arguments

including the identity function . We call £ the set of basic library functions.

Let f be a map from Rn to Rm
. We call f factorable function

if and only if there exists a finite sequence of functions

‘~ k D C Rnt_ P that satisfy the following conditions:

2 n1) f1
(x) x , f 2(x ) = x , ... , f (x) x

1 1  n m l  n
2) f k m+l(X) = f (x 

, . . . , x ) , . . . fk (x) = f (x , . . . , x

3) for ever y i ,n <  i < k , either 3 g ~ £ ‘

= g(f
1 

(x) , . . . , f~ (x)) j 1,j 2 , ‘i s 
<

I S

or

f ( x )~~~C C~ E R ~

we call such a sequence ~ basic sepuenç~ and we say that the sequence

is a basic representation for f

-3-

~

-- _ _



— - - - -

Remarks.

1) We will not use the prope rties of the real numbers in most of the discus-

sion to follow , so one could apply the theory to functions over any set.

2) The analogy to FORTRAN is clear. The sequence ~f1~ that is a basic

representation for f corresponds to subroutine that computes 1. The first

n places correspond to the arguments and the last m to the result . The

middle part corresponds to the body of the subroutine . A basic representation

for f can actually be written down by following the path of execution

(assuming no IF and GOTO statements are Involved).

3) Many different sequences can represent the same function.

4) It is easy (but Important) to verify that for every i,n < i < k. the sequence

f 1, . . . ~~ represent s f
~

5) It is always assumed that the compositions are well defined , that is:

If f g(f . , . . . , j )  then for every x in the domain

of f ( f (x) , f . (x) , . . . , f . (s)) is in the domain of g. Only if this

condition is satisfied, can we call f factorable.

6)  F unctIons which are Identically constant are thought of as functions of

many arguments. The number of arguments depends on the context .

Example:

Here Is an example of a factorable function. Let c’ be the set

- , , / , ~~ sin , cos , exp~ and f(x) = cos(x) exp(sln(x)) + sin(x)r~~2.

A sequence which is a bas ic representation for f is:

-4-

--

~

-

~ 

--~~‘~~ - , - - - - --.~~~~~~~~ .~~~~~~~~ ,‘ ~~~- ‘.-~~——~~~~~. -~~~~ ‘~~~~~~~~~ - .- -- ~~~~~~~~~



-~ - , , . - — -
~~~~ 

.
~~~~i~~’=-~ -~ ‘~--~~~~~~

-u

I ) I ix x

2. f x ~ = cos(f
1
(xi (

3 1 
3
(xi sin (f

1 
l xi)

4 f~ (x = exp (f 3 (x ) )

5 i  f (x i  — f (x l f (X i
3 3

~; i f6
(x) f

2
(x) f

4
(x)

7 )  f,,(x) f (x) f~(x)6

1. 3 . Composition .

n k k m
Let q :R -. R and h:R -, R be factorable functions.  Let

q1,q 2 ,... ~~~~~ 
and h 1, h 2 , .  . .

he bas ic  representat ion s for g and h . From these two sequences we con-

struct  a th i rd  sequence tha t  we call the composition of q
1,.. . 

with

h 1 ..  . . , h L
” . The sequence is of the form f 1, f 2, .. ‘~ L1+L 2 

where f. =q.

for i = 1,... , L1
+ k , and

c if h . ~~c , c €  R
= 

~~~ (f ~
1
~ J 1

‘~~L1+J 2 ~~~~~~~~~
‘~ L1+~~~

if h. = g(h ,, . . . ,h .)

for i = k+l,k+Z,...,L2
g (.~

Remark:

The composition of q1, ..., q~ with h , ..., h is simply
i+k 1

overlaying the first k terms In the sequence h1, ..., hL on top of the
2

last k terms of the sequence q1, .. . ,

l+k

-5-

I. -~~~ _ _ _ _ _ _ _

~

~

-

~
--

~

~~~~~~~~~~~~~~~~~~~~~

I c r n r n a I ;  I t  q and h be factorable functions q: R~ -+ Rk ; h: Rk Rm

‘ 

~~~~~~~~~~~~~~~~~~~ .. ,h
L be baslcrepresentatj ong for q and h, then

I h(q~ is a factorable funct ion and the composition of q1, ... , L~~k
with

h , h
L is a basic representation for f.

croof: The proof follows indirectly from the definitions .

Corollary 1: The set of factora bl e func t ions is closed under finite number of

5 institutions .

Corollary 2: Let ~y be a collection of factorable functions . Let f1,. .

be a sequenc e of functions of the following form .

n1) f1 = x , . . . , f = x

2.1 for n < i < L f . is of one of the forms

a) f . const .
1

b) = g(f . ,. . . ,f .) for some q E
~
‘

~~~~~~ ~~~~ 
< ~

c) f . = q(f . ,. . . ,f . ) for some qE~ i1,... , i~ 
<i

Then , for n <i  < L, f . is a factorable function. We say that the sequence

f1,. . . ,f . Is a factorable representation for f, .

Remark.

The substitution of one sequence into another corresponds to a call

to subroutine or function in FORTRAN and the sequence f1,.. ‘~L 
in

Corollary 2 corresponds to a subroutine that uses other subroutines in the

computations .

-6-



1 . 4. Differentiation:

In this sect ion we show how one can compute total or partial derivatives

of factorable functions . We s how how one can get from a basic representation

for a factorab le function to a new sequence of functions which is a factorable

representation of the original function and its total (or partial derivatives by

means of simple rep lacement operations .

We start with an example:

Let £ and f (x be as in section 1.2: that is , £ =  f+ , -
, ~~~, / , ~~~~ sin,

cos , expi and

f ( x)  = cos(x) exp(sin(x)) + sin (x)~~ 2

As before the fo llowing sequence is a basic representation for f:

1) = I (I is the identity function)

2) f 2 = cos(f 1)

3) f 3 = sin( f 1
)

4) f 4 = exp( f 3
)

f = f * f
-) 3 3

6) f 6 = f 2 * 
f

7 )  f7 = f 6 + f 5

_______________________________________________ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


p.— ~~ ~~~~~~~~~~~~~~~ “ ‘~~. T ” ‘~~ -

t n i s s e q u e n c e F ’;

- x , X) ‘~~~, X ’) ~

2 1 F , ~~~~~~~ . F = — . ui(1
1

) . F
1 /

H F s:n’ F~
) , F~ ~~~os i F1

) ~ F~ ~

4) - F • ‘;- :F ’ F) , F’ = F * F~ /
4 -1 ;~

/ l’~ F * F . , F F ~‘ F ’ + 1’’ 1’
-
~ 3 3 5 3 3 3 3 /

F F , * F4 , = F
2.

* F~ + F~ F4 /

7) / = F , + F , i~ = F’ + F~)
~ I

Please Note:

a) The new sequence is a factorable representation for a function F :R2-. R2

bi There is a simple ” correspondence between the original sequence and

the new sequence. Each term in the original sequence of the form g(f .)

was replaced by a term G(F
1

) where : G: R2
—. R2 is a factora ble function,

and F . is the j th term in the new sequence . Similarly terms

of the form gif . , f . were rep laced by terms of the form G(F , ,F ,
2 ~l ~2

-t;~-ere G : -. a factorable function which corresponds to g

f(t
0

) ,,
c) F i n a l l y , F(t ,l) = “ or in general: If h is a function of t ,0 -~-— f(t)~dt t=t 0

h(t 0) = h0 , ~~ h(t)
~~~~~~ 

= h~ then

— 8 —



-~

f(h (t
0

H

F i h ~~, h~ ( =

f ( h ( t ) i  1
t t o /

The fol lowing discus  si - ,n describes the genera l case .

Let c’ be ci set of basic libr aro :unct lc ns . Let T be an operator

that maps tun cti -in s to functions. We assum e the following :

1) T is defined for all factorable functions and if f : D C Rn ~m then

T[ f] : E C R~ 
k 

— Rm k (k is the degree of T ) .  E D X R~~~’~ 
m

2. 
r 

~ 

1 

/ T [ ~~

T 

~
tm j 

~~T [ f m
I

3) T[ I~ l T k (I . is the identity map in

4) For every g £ (g : D C P5 
— RI a factorable function

G : EC R
S k ~k 

(E = D >< R~~~
D 5

),~~ for every factorable function

f DC Rn ~~S f (D )  -o D

T[g (f 1
, . . . , f 5 )] = G(T[ f

1
] ,  ... , T [f ~I)

-0-

_ _ _ _ _ _ _  _  J



~ ) T~ c ‘ n : t .  ] Is a c’ ,nuta r. t veot s functiun (T[ co; st.  I ~ R
k ) and ‘

~~ a

t a c t  r i L l ~- ~unct i n C :  R —  i~ ~ ~c R Ti c] ~~C(c ) .

I .

Ia ”. ~ ~1nd T sati~ fy the above condit ions . Let f be a factorable

~t ion : i - - 
-

~~ ~nd let f
~
, 1L be a basic representation for f , then:

T [ f ]  is f ‘tor~ ble funct ion .

if w. ’ rep l i- e the terms • f~ by F1 FL 
w here

i) for 1 <- K ~ F1 is the sequence x~,l,.

ii, for < i ~ L

= 

[G r .~~. . .  , F ) ;  if f
~ 

- q~( f ~
1
, .  . . ,f , )  g1( £

L C(c )  if f
1 

c

then we get a factorab le representation for T[ f ] .

rOOt :
By induction on the length of the sequence representing f . If

-. R and f 1.. 
~~L represents f and L n+1 then either

a) f = g(x , . .  . , X I for some g E  £ or

b) f = co ast . 
-

1 2 n ~l
in case a we rep lace the sequence x ,x , . .  . ,x 

, 
g(x ,. . . ,x ) by 

-

1 1 1 k a 1 n k ~~~ 
J 1,k i5,l

x ‘ , . . . , x , . . . , x , . . . , x ‘ 
, C ( x , . . . , x , . . . , x , . . . , x

tThe function G
~ 

is the factorable function corresponding to the basic
library function g..

—10-

-

~

- - -

~

- -—



— “~“‘~~ - ~~~~~ ‘—~~~~~~~~—‘‘ - ‘—~~~ --—- —---— ~~~~~~~~~

‘.-;he~c’ 1 ; Is thI ~ “~I~ 010 1 ~t II O . -~~tTes f JOnc1 n g to g . Ry As sum pt io ns  3

i:~~~2 -1
I ,1 j ,k I ,l j , k

‘ 1’j f ~ 
-: ‘1’~ g i :~: 

‘ , .. . , :-: = (
~ ix , . . . , X , . . . ,x , . . . ,x

and  t h n re ’fo :e  .‘. - i’, i ’.’e a t a c t ’  r u b l e  representation for T[ f i . In case b if c

WI’ ~~-~~1di(’ X s .c ny X ‘< ,C(~~
) and acj~ i~. h’,

As su~np t ion S T[ c] = C(c ) . Let f : R~ — R , f 1, .  ,f~ represent 1, L n4 j , cir,o

as sume  t”i’~ the ) rer r .  is true for all sequences of length L = n~ i, 1< j .  f f L
(x ’ , . . . ,

is nit :ner o: toe fern’ g~ (f . . . . . , I. , g~~ £ . . . ,j ~ L or 
~L cor s t .

1 5
For 

~L 
cons: the same .jr~ omeo t as for L = n+1 ap~ 11es . nt F1 , . . . . F  L

he th ,~ ceou~ nce t h a t  ‘or r e sp o n d s  to f , . . .. f . f = I g i f  f i , so
1 L L is

F’,.’ ‘onst :’ - :tion , F GI F  - ,, , . ,  F , ) . By the induction hypothesis . F =

L 
~s

TI: , J F = T [f I (Inc F , 1 < i < s , are fa ctorab l e, t~
’ eref r~ ’: B:

is i i

Lem ma 1. Oft . , F . I is fa ctorable . By Assumption 4 ,
11 J s

T[f LI I’[g( f ) ]  = G(T [f , j~, . . . ,T [f . ii = G(F . , . . . ,F
1 s 1 S -l 5

Q. L. D.

As an immediat e consequence of this theore m we have:

Coro llary 3: The theorem is true for factorable functions from R m
~ to Rm

We also have the fo llowing extension.

P:~~erern 2. :  Let T and ~ sa t is fy  the a bove . Let ~ be a set of factorable

f ,c , ‘ two s .  Let f be a factorable function f: P ’ — R. and f 
~L 

a

factorable representation for f , that is : f1 = x1
, .. = ~n and for

n < I < L Is of one of the form s

— 1 1 —

- _ _



II I q I !. , . . . , I . 
) , i1, . . . , j i, g £

1 S

b) t q ( f
1 

, . . . ~~I , i , , . . . , 
— q

1 t

0(41St .

U ‘;.~~~
- rupla ’i’ th is sequen ‘e by tl~~ seque nce - where

I = X , . . ,  (41 ( 1 f c n 1 L

r G(F . , .  . . ,F i if I - ij if ,. . . ,f i , gt £
I ~l ~s ~I

F - ~ T [q 1(F , .  . .  ,F I if f . q (f , . .  . , f I , q ~

L 

(‘ i c )  if f .~~~ o

thlu1,for Li < I < L , the sequence F1, . . .  ,F~ Isa factorable representation for

T[ f1] .  The proof of this theorem Is the same as the previous one. We only

have to use the following lemma.

Lemma 3:

Let I he a factorable function f : D C R1” 
— R . Then , for every

factorable function f : D~ Rm
~~ R~ with f(D) L D

T [ f( f 1
, . f

n ] = T[ f ] (T[ f1] , . .  . , T [f ~f l

Proof:

By induction on L, the length of the sequence representing f

If L = n + 1 then either f c or

— 12.—



i i is
I .? -

5)
If t h & ’ r e  is : i ot l i : ,  ‘m 100 ii ;i Y . . p tL ’ ’m the lf ’mr , i

is tr~~ ’ by A s s u m p t i o n s  3 i :, i 4 ,

Ass mi the lo m mirci a is ti de for all 1. :i~~j 1 1 410 ~ , 
, 4 i , then,

i f  f c . aq’~ iri t here is , eth iuq to prove and if I j i f  . . . . ,f . 1
i s

J 5 < L  g ~ then:

T [f ( f 1 I’ )] = T f g ( f . ( f 1 , . . , , f ’ ) , .  . . , I , ( f 1
. . . .  f

n
flJ

= G ( T [ f . ( f 1 ç n
11 , T [f . ( f  1 f m ) ] )  by Assu m pt ion  4

= G( T[ f , ] (T [f  T [f n]) T[ f . ] (T[f  i] , .  ,T[ f nl)) by induction
1 15 hypotheses

= T [g (f . f . ) ] (T [ f  i] ,..  ,T~~f 
°])  by Assum ption 4

= T [ f ] ( T [ f  ~~~~~ , T [f ’1] i Q. E. D.

Remarks:

1) Take ,~ to be the set of standard Fortran functions and the arithmetic

operations . Let T be an operator we wish to implement and assume that

Assum ptions l-~’ are satisf ied . Theorem 1 then says the following: Let F

be a subroutine that comput es a function f (For the moment we assume that

no IF or GOTO statements are used ). Suppose we rep lace each variable

by a K vector (L vector by a K X L-array and so on), replace each constant

by a constant vector , and rep lace each arithmetic operation and function call

by a corresponding subroutine . Then the result would be a Fortra n subroutine that

computer T[ f ] .  The rep lacement i des ~,ire simp le and can be carried out

mechanical ly by a pro ‘or : ’p i l e r .

- I ~-



2.) Theorem t says that if we are using other subroutines or functions

in the ‘o ose  of the computation we can transform them separately. In the

t1’ p lac enioii t process we replace the original call by a call to the co:responding

:i~ nsformed routine .

1 . 5 Exdmple l. Taylor Series Expansion

Let [X(t01 1 . denote ~~~~ ~~~~~~~~~~ 
X (t )

~ t = 
. Assume we know the values

of [X( t0 )~1, [Y ( t f l ,  j = 0 ,. . . ,k

ii I f Z = X ± ‘
~~ , then we can compute [Z(t0)j. by

IZ(t0)11 = [X ( t 0)]
3 
± [Y(t 0 )]~ , j = 0 , 1,. . . ,k

i i )  If  Z X * Y , then by Leibnitz ’ rule

[z(t0)]. = ~ [X (t~ )] [Y( t 0 ) ]
1 , = 0 ,. . .  , k

s=0

iii) If Z = x/~ and Y(t 0 ) t  0 , then

i — I
[Z11 

= l/Y(t 0 ) . i {X( t 0 ) 1~ — ~~ [ Zt 0 )] . [Yt 0 ]~~5 } j = 1, 2 , . . .  , k

iv) If Z = EXP (X) ,  then we can compute {Z(t 0 ) ] .  using the recurrsion re lations

i — I
= s)/i ) [Z( t 0 ) 1 5 

. [x t~ ]~~ i = 1, 2 , . . .  , k

It is well known that there are recurrsion relation s tha t enable one to com-

pute successive derivatives of functions that satisf y rational differential

equations. In Appendix A we give a list of such recurrs lon relations for the

most common special functions . (See also [1,7 ] ).

As a matter of fact , the discussions in [1] and [7] show that one can

write such recurrs ion relati ons for functions sati sfyin g differential equations

of the form Y ’ = f (t ,Y) where f is a factorable functio n and £ is a set

- 14 —

— ~~~~~~~~~~~~~~~~~~~~~~~~ — —  —. — ——— ——~~~~~~~~~ 
--

~~
- — -  ‘— .  —‘-rn --

~~
—” - ——— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


‘ ‘ S~~~~’ ’ ~ ’ r - - “ --“ r ”~”~”$, S -~’.-* ., n,...._._...

containing thin imithmetic operations and function s satisfying rational differ-

o:rt ial equa t ions .

l a t ~‘ be a set that consi ts of the identity function, the arithmetic

op€ ’ r t io m s . functions that satisfy first order rational differential equation s

(like exp t~ d log), pa irs of functions satisfying second order rational differ-

i’:’,ti:il ecu it io: rs (like sin and cos), and so on . Choose the set ‘ in such a

w i v that all to irrsion relations between successive derivatives can be

expr essed as factorable functions. For example : the set of functions in

Appendix A is such a set .

Let k > I be an integer . For each basic library function g: D C R5—R

take G to be the factora ble function satisfying :

a) C : E = Dx R
s k

bi for every function X : R — R5 , X ~ , if X(t0) € D and

[X(t 0 11, = R
5

, i = 0,1,... ,k

G(X Ø , X~~. . . , Xk) =

(.

We define Tk as follows:

Let f: W C R
5

-
~ R be of class

Let T[f] = F be the function satisfying:

a) F : W X R
5 k

R
k
~

b) For every function X:R - .~R
5 ; x € ck , and for every t

0
E R

— 1 5 —

-~~~~~~~~~~~
-

~_ _ _ _

such that Nit 0 i W

/“ [t x t 0)) 1 0 \~

[f ’x (t 0)) 1 1 ‘1
F([X(t0)) 0

, 1x1 t0)
~~

,. . . , j~~ t0 i),)

[f x t)) J
O k

It is riot hard to see that the opera tor Tk and the set ~‘ detineu aoove

satisfy assumption s 1-S of Theorem 1.

Note that the set £ contains only analytic functions and therefore

the factorable functions are analytic. In the next section we will show that

it is possible to include in the basic library set , functions that are only

piecewise analytic (like max , mm and abs).

Also note that in order to compute high order derivatives of a func-

tion one has to use all the lower order derivatives of that function . There-

fo:e the operator T : f~~
. f (k)

k> 1 doe s not satisfy assumptions 1-S of

Theorem 1.

1.6 Example Z~ Partial derivatives

Let f , denote
(I) ax .

Let ~‘ be as in Example 1.

Let k > 1 be an integer.

For each basic library function g: D (R
5—.. R take G to be the

factorable function sat isfying:

a) G :DXR
5 k

-~

-1 h-

hi For evorr funct ion h: V , h C
1

if h(X0
) D then

I)

‘ g

G(h(X0),
h (1) (X 0

)~~. . .
~
h(k) (X

o)) = :
P\~~~

g(

~~

) (
~

(
~

0
))
J

/

1

We define T k as follows :

Let I: W CT R5— R be of class C1
, let Tk[fI

= F be the function

satisfying:

a) F : W X RS
. k

— R1°~

b) For every function h: Rk
~~ R

5 h ~ C
’, and for every X0 E Rk

such that h(X0) W

7

” f (h(X 0
)) ~\~

\(f(1) (h(X0))

F(h(X0)~ h(1) (X0)~ .. . ,h~~ (X0)) =

)

Again it is not hard to see that the above ~ and T k satisfy the assump-

tions of Theorem 1.

— 1 7 —

L . .~~~~~
. _ _ _ ~~

1. 7 . PiecewIse factorable functions:

So far the model does not describe computer programs which

include IF and GOTO statements. The extension is straightforward.

We use the following definition:

Definition:

A function f : D C Rn Rm Is a piecewise factorable function
k

if and only If there exists finite number of sets U1, ... ,U~ ~ D cL) U
j =1

and f restricted to each U~ is a factorable function . A very useful fact

about piecewise factorable functions Is:

Lemma 4:

Let q and h be piecewise factorable functions . q : C

h : D2 C Rk _ R m If q(D1) = f z € Rk I z = q(x) , X E D
1}~~~~D2

then

f : D
1
C Rr

~ Rm defined by f(x) = h(q(x)) , X E D1 is a piecewise factor-

able function .

Proof:
S

Let U1, ... ,U5 ~
R
n

be sets ~ D1 ~
U U. and is a

k 1= 1 t
factorable function. Let V1, ... ,V~ ~~ be sets ~ D2

U V.

and h is a factorable function .

Let ~~~~ ~~
U. I q(x) E V

1
} 1< 1< s , 1< j < t . If W1~ � 0

then f is a composition of two factorable functions and therefore

l,j
factorable . Since q(D) C D D1

C U ,. Q. E. D.
1 2 ,j

— j a—

-, -~~~ -‘ —‘ — - -— -- ——— -- -— — --————,- —- — — — -—- — _____

Since locally (that is: on the appropriate sets) piecewise factorable

functions are factorable, the previous discussion applies. If ~ and T are

as in section 1. -1 and f is a piecewise factorable function then, T[f l is a

piecewise factorable function. If we carry out the replacement process for

the factorable representation of each piece , we will get factorable

representation for T [I] on each piece . We therefore arrive at the following

theorem .

Theorem 3: Let c’ and T sati s fy assumptions 1-5 . Let I : D C Rn _, Rm

be a piecewise factorable function. Let U ... U C R~ be sets1’ ‘ 5 —
5

? D C L_- U, and f is a factorable function, 1< i < s.
~~~~~ ‘ - i  1 U . — —

1

Let I. i,.. .  L 1 < i < s be factorable representations for
, ‘ I

f . If we carry out the replacement process as in Theorem 2 for each

sequence I ,
~~~

, . .
,L~ ~ < i < s , then we get a piecewise factorable

function
. (J ~

~~~~~ 
fl R~ 

k 
? F T[ f where

U, = U. X Rn - 

. We call this function T[ f ] .

In practice , as Fxamples I and 2 show , ~ is a set of analytic

and piecewise analytic functions. A lso,most functions we use in applications

are piecewise factorable and therefore piecewise analytic. Of course,if

one wants to talk about piecewise analytic functions, the pieces (that is

the sets U, ) should be ‘nice ’ sets.
1

Most computer programs that arise In numerical applications compute

piecewise factorable functions. We can always make T[ I] 1 
= f. Therefore

if we leave the decision statement and GO TO statement unaltered by the

— 1  ~ —



F, - -.---—.--- .,-.-
~~— -—‘-—-

replacement process , we will not change the path of execution. Since

locally this path defines a factorable function f , after the replacement

we will get a factorable function which is (locally ) T[ f]

1.8 . Iterative procedure:

Many functions are computed iteratively. The number of iterations

in the computer program must be finite of course . This number however

can change according to the values of the arguments. The usual arrangement

in iterative procedure is as follows: One prescribe s a tolerance ~ and sometimes

an initial guess. The program then proceeds with the iterations until the

change in the function value , or the estimated error is < € . Once € is

fixed, the number of iterations as a function of the arguments is , in most

cases , piecewise constant. Since !nterative procedure can differ considerably,

we cannot say what are the precise conditions that make functions that

are computed iteratively , piecewise factorable. However by careful

study of a particular problem at hand , in many cases , one can show that

the function actually computed is in fact piecewise factorable.

In suc h a case if one computes derivatives of that function,

one actually computes the derivatives of a piecewise factorable

function. These derivatives might not be a good approximation

to the derivatives we had in mind. However many times one can use the

following classical theorem (see [ i s] ) .

-2 0 —

- - --

~

- - - - - - ~~~- - -~~~~~~~~ , - - - -
~~

-
~~~~~~~~~~~

~~~



—~~~~~ —~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~ 
,~~~~~~~~~~~ —~~~~~

‘rheorem: If I. is a sequence of ana lytic fu nctions in the complex

plane end — I uniformly on a closed disc D(x 0, rI then f is analytic

in the disc , f (k)~~ 1(k) 
uniformly and ~z € D(x0,r)

1 
J f

(k) ( )  - f
(k)

( )  J <~~ sup f (w) - f (w ) J
r w’ D(x 0, r) ~

1. ~ Tay lor Series Expansion of Implicit Functions.

Let 1€ Ck , (k > 1) .  f : R X R n 
— R

n assume that f(t
0 ,

x
0

) = 0, t0 € R,

x € R
n and r = f ’(t ,x ) exists. Then the system of equations f(t,x ( t ) )

=

0

0 defines implicitly a unique function x:R~~ R
n
, X E  3 x(t 0 ) x0 and

f(t,x(t)) 0 in the neighborhood of (t0,x0).
Moreover , from Theorem 20 . 3 in [6 , Oh. 5 , p. 32 9 - 3 3 2 ]  it follows that

if 
- ( j )
‘T 1X (t 0 )

= f It , 
~ • ,  ( t- t ~ ) ) i = 1,2 ,... ,k

J= O
then

dm
i) for m < i g .(t ) = 0

d~
m 1

i
ii) x~~(t 0 ) -r  d

dt1 1

tThere is an error in the statement of the theorem in [6~ (Theorem 20.3,
Oh . 5 , p. 32 9 ) .

-F 
~~~ 

(g (t))

and not

~
(i)

= -

~~~~~ 

(g1(t))

— 2 1 —

I—



.=.‘.= -. .

a -,2orol lary we have: Let
i:l~~J ) (t ) - ~

‘ (t—t )‘
-
~~ ( t )  = f (t , ~~~

‘ 

, 

0 
~t~ t )i + - 

U

~~~
‘ j . 0

then

(i)-F —fl— g (t) = x (t
0

) - x
dt ’ ‘

for any vector E Rn
.

The above discussion shows the following:

Theorem 4:

Let f be a factorable function (with ~ as in Example 1).

I : P X ~ n_ R
n
. Assume that: f E C~ (s > 2) , f(t 0, x 0) = 0 and

F = f 1
(t0, x 0

) exists.

Assume we know x(t 0) , [x(t 0)] 1, . . . , [x(t0)] . 1 (i < s).

If we take any vector in Rn as an initial guess for [x(t 0)~ . and we

get the Taylor series expansion of the modified Newton method (F

considered as consta nt matrix) x,K~~
= xk

- rf(t 0, Xk) then after

one iteration we will get [x(t 0)]~ exactly:

Therefore we use the following procedure : We start by the

regular Newton method to find x 0 such that f(t0, x0) = 0. Then we set

-22—

_______ -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - ~~~~~~~-‘~~~~~,--~~~ -- - -—~~~~~~~~~~—-~~~~~~~ - --~~ -~~~ -~~~~~~~~~~~~~~~

~~ -- ---- -.—--------- --

= I t , a n —i g c- t the ‘I’ a y l- r series expansion of the m o d ified
x U

T~ewt - a et hn i . In t h ’ ith st~’p vie compute derivatives up to order i,

taking 0 as rhe initial guess t . r [x t 0)] . . We continue the same way

~n:iI ‘.‘;~~~ ~e ~€:a.’-~ t~v’-S up to L i l a res i r e~r o ruer.

1. 10 Computation of Sparse Gradients

a) Band gradients : Many times the gradient matrix is in band form for

exam ple in the numerical s~~1u:i an u~ a twz. —point boundary value problem). In

such a case t he gradicat can be computed with great saving in time and

space.

Let f : Rn
R~ oe a factorable function (piecewise factorable) .

and a s s u m e that , for all i, f i depe nds only on ~x
1

j where l -j ~ < k } .

Assume that we want to compute the partial derivatives of f with respect

to x € R
n. Instead of reserving n+1 words for each variable and starting

wit h the matrix:

(x l
~

1 0 0

One needs to reserv e only 2k+Z words for each variable and start with the mat r i x

—
‘~ 3 —

_ _

--
‘~~

‘
~~~~

-- 
~~~~~~~~ - n~~~~~~ -rj  - ——— —.

- , , t k~~1 ~~~~~~~ 2 k + 37 , ,
- . . -

.
. -

.
. - ‘- . . .

/
,‘ 1 U . 1 1) -

-l 0 1 . : U 1

0 ‘
.

0

.

u) The general cas e: M a n y t imes the gradient matrix is sparse but

doe s nor ha .e a structure that is easy to take advantage of . Howev er it is not

necessary to ~~f l OW in ac’ auce w h i ch of ftc entries of the matrix are ident ica l ly

zero . One - can ‘a rry this information w i t h the 2orn p1~ tat i on and use ftc following

oo’;io-c s f ac t :

If

~ 0

and if

h(x) = f g
1
(x) g (x))

then

r =
~~~~~~~~~~~~~~~~~~~~~~ 

~~~ ~~~~~

In the implementation , each variable will be a pointer to a vector

which will keep a list of nonzero p~rtial derivatives. Each subroutine

that replaces a call to a basic library function will compute function values

and nonzero partial derivatives only . The subrouti ne will create a list of the

nonzero partial derivatives of the composit ion.

- 2 4 -

iflC imn i c:~ .rn Lation ot a u t a m i a t i c c u m u p u r a t l o n at pa r t ia l der ivat ives

Ut FOhIh’:AN run- - n u n s (GhA~~lL\ T) i~:S~ ’r iLed in this renart does not use

r h ’ n ye metn~ : . ‘
~
‘- - plan to im~ 1 on . ant this mett iud in the near ~uturc .

2 . 1i~ : h’r.j~ion. nL~~tiun.

2. 1. ________

In ~‘arlior Sec n i u r ~s it was pointed out that most computer functions

an: sun routlru~s usei in numerical computations compute (represent)

pie-c € - .~. ms e a -a rable functions. It w as sho~~i that every sequence

re~-r es - -rmnin ~ a n ,ece ’.Vise factorable function can be transfo rmed into

ano ther sequence w hich represents the original piecewise factorab le

:unction an-i its tcnal or n-a r :ma l uer iv -i ti ves. The translation process is

merely a replacement process ani can be carr ie-i out mechanically.

In orier to implement such a rep ia -~ ment process one neecs a

processor that will do the following :

a) Break the subprogram into a sequence of one step terms.

b~ F<epl a ae each term by a body of code.

c) Expand each program var iab le into a vector . The size of that

vector will depend on the order of the operator implemented.

d) The processor should leave the control structure unaltered,

that is: Do loops and 11 statements should be left unaltered.

The re are three principal ways to implement the replacement process .

a) Macro exp ansion.

b) Rep lacing each term by a subroutine call.

c) Using an interpreter.

-- ~~~~~~~~~ ~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘A -  se to use the s ound ~flOtflO (l mainly because we could use an

exi s ’Jnj  u:~ - L urn l- i ler :  A~ GMENT. We also feel that the second method is

Lao rnos : o ’.. ’c r tu J  and t lc - x ib le  of tOe three.

2.2. The AUG MENT Pmucurr piler.

Since we - j i C  using A U G M E N T  as the main tool for the implementation

of aut - mat ic  ii: e r e n t i a t i o n , vic- find it appropriate to give a very short

i~ scr i tion of the r un -  -t iun an.i use of AUGMENT. However , in order to

-aniers:a:ii ull’i now a. use it , the user should read [ 3]

The AUGMENT precompiler was designed to simplify the use of

nonstandard data type s in FORTRAN. AUGMENT enables one to define

rm :-w - iota types and operations. It enables one to write FORTRAN programs

using triese new data types as though they were standard . AUGMENT

input consists of programs written in “extended” FORTRA N, that is;

l OPIkAN programs using nonstandard data type s , operator s , and functions.

AUGMENT translates the input programs into standard FORTRAN programs

wit h the nonstandard constructs translated into subroutine and function

ca lls. The supporting package (that is , the above subroutine s and

functions) imp lement the operations with the nonstandard data types.

In order to implement a new data type with AUGMENT one has to do

two things

1) write a package of subroutines to implement the operations and

functions defined on the new data type,

2) write a description deck which describes the new data type .

-2 b-

~



In the io -orription - h - c r . - ~:ie provides AUGMENT w ith the following

in : r rnat i  a:

a) The n i c e  s) or the fleW - io ta  type(s ) .

a)  The n u mb e r  an-i t y p e  of computer w o rT h  to reserve for each

n o n s t - an c a r - i variable.

c) The set of  operations and ‘ s ta n iard ” functions defined on the

ccv; :iata t ype .

mi) The names a n- i calling sequences of the subroutines and turv tions

that icmplemnent the oh -ye operations.

e) The relations betw een the new data type s and other data type s

(stan lard an i nons tan i-a r i

For more met ~~mlu intormat iufl see [ 3

2 . 3 .  GRA~~ILNi anO A’i’LOR Packages.

This  renort desc r ibes the implementation of two type s of d it a-ron t i catmd am .

1) TAYLOR: Automatic Taylor ser ies expansion of FORTRAN functions.

2 )  GRADIENT: Automat ic gradient computation of FORTRA N functions.

The auto rrat ic  differentiation is imp lemented by providing two new data

types: TAYLO R and GRADIENT. The operations defined on the new data

types are the arithmetic operations and almost all the standard FORTRAN

functions. Each subroutine that implements a nonstandard operation

computes (represents) the corresponding factorable function G of Theorem 1.

—27 — 



Su~ m~ So ne w- ~nts to cumpu to tf~~- 3ra  iic~ t of i unction f , which

is ~ t c :~~- t i ~an ot n van a:.  i c c .  C-rio O-~r; i i i ,’ t o - .v r it :  j  FOR’FRAN function

(s u L : .~~. t i n t ’ )  tb-a t c i - r rg - u t -s : .  in the t i m mi or sc L- !out ine code , one

i - I  - S h u  it - ; ucmea t~ -~n thc’r variables in :luding the function itself)

as typ’ - -J RA 1 I . I rm ~~c one suh :r i ’,s this run cti -c- n -A’itn the descrip tion

deck catch is h-a r t 01 the ; -ac~.age) to A [JGMLN1 as ciata. The output

acer . A t  ( ~\ 1L,U I w ill he thu desired suhruut ine . A UGMENT will translate

the rc rc : ic n  into a FORTRAN subroutine wri t ten in A N S I  standard FORTRAN,

declar i ng eac h GRADIENT variable as a REAL vector of dimension n + 1

(and each k vector as an (n + 1) X k REAL array and so on). Each

ari thmetic operation or function call will be translated to a call to the

appropriate subroutine . The translated subroutine toget her with the sub-

routines provided by the GRADIENT package will compute the gradient of

the function f at any desired point.

Below we give a detailed descri ption of the two packages and their

use. The complete listing of the supporting packages and the description

decks is given on a microfiche card at the back of this report . Most of

the details of the two packages are the same: kiything that is said below

applies to both packages , unless the contrary is explicitly stated. We

will use the term VARIABLE for either type GRADIENT or TAYLOR and CONSTANT

for types REAL, INTEGER or DOUBLE PRECISION. The relations between

VARIABLE and type COMPLEX are undefined.



TAYLO R and GRADIENT Variables:

Il - i -  - t i  GRADIENT variable is a REAL vector of dimension N + 1 where

N is the number of the in-dependent  arguments. ‘I’he first word holds the

variab le value an 1 thc- (I + 1) th  wor d holds the partial derivative of

that variable wit h respect to the ith independent argument.

Eac h TAYLOR variablc is a Real vector ~ f dimension N + 1 w here

N is the highest normalize d derivative to be computed. The (I + 1)th

place’ :iolci s the lth normalized - ic-r ivat ive , I 0, 1, . . . , N.

Ar ith met ic  Operations:

All arithmetic operations betw een VARIABLEs and all arithmetic

operations between VARIABLE and CONSTA NT are legal except INTEGER

ra is ec  to a VARIAB LE power. Since the recurrsion relations that replace

ari trime tic c perat ions between CONSTANT and VARIABLE are simpler than the

general relations , separate routines are provided to imp lement the

arithmetic operations between CONSTAN Ts and VARIABLEs. Conversion of

CONSTA NT to a vector format is dc-ne if there is a statement of the form

V = c where V is a VA RIABLE and c is a REAL expression , or if there

is a re ference to a conversion functiur, (see Conversion routines ).

Standard Functions:

In Table 1, we list the standard functions that are implemented in

the two packages. One can easily add other functions to that list by adding

their names to the description deck and writing subroutines to implement

them.

— 2 9 —  



.-~~~~~

Tab le 1.

runction re ference Function Suffix Comments

A BS(x) X~ ABS

ACOS(x) t cos
1(x) ACS

A LOG(x) t f n (x )  LN

~ALOGlO(x) 1og10(x) LOG

AMAX 1(x ,y) * max( x ,y) MAX function of two arguments
only

AMINUx ,y) t min(x ,y) MIN

ATAM (x) tan ’(x) ATM

sin~~(x) ASN

CBRT(x) t x 1
~”3 CBR

COS(x) cos(x) COS

COSH(x) 1 cosh(x) CSH

COTA N(x) t cotan(x) CTN

EXP(x) exp(x) EXP

LOG(x) t In(x) LN

MAX( x ,y) max( x ,y) MAX function of two arguments
only

MIN(x ,y)  min(x ,y) MIN

SIN(x) sin(x) SIN

SINH(x)t sinh(x) SNH

SQRT(x) X 2 SQR

TAN(x)t tan(x) TAM

Not an ANSI standard function.
t See automatic typing.

— 3 0 —



— -—-4
- — -

~~~~~~~

Automat ic Typing :

This package provides the same feature tha t exists in many FORTRA N

com pilers , automatic typing of functions; that is , the type of function

use d is determined by its arguments. Thus , for ex ample , we have defined

LOG and ALOG to be names of the function which takes the logarithm

o~ an argument of type VARIABLE.

— Conversion Functions:

There are three subroutines that implement conversion from CONSTANT

to VARIABLE, one eac h for type s REAL , INTEGER and DOUBLE PRECISION.

These routines can be re ferenced in the original program by the use of

the conversion [unction: CTTYL (.) in TAYLOR and CTGRD(.) in GRADIENT.

The function accepts all three standard types as arguments (see automatic

typing). Automatic conver sion is invoked only for type REAL. That is:

the statem ent V const is legal only if the const. is of type REAL.

Norm Function:

it is sometimes convenient to test the distance between two VARIABLES

(for example in a test of convergence). Since the relational operators compare

only the first words of the VARIABLES they cannot be used for that purpose.

The packages provide a function NORM that compute s the distance of a

VARIABLE from the 0 vector. In TAYLOR package , the function NORM is a

function of two arguments , TAYLOR and REAL

NORM(v , t) = max If v] . It ’ .
0<1 <N

— 3 1 —

.

~

-- .
~
~-

In GRADIENT , NORM is a function of one argument

NORM~ V) max (IV .~)
0 < i < N

In both packages the function is imp lemented as REAL function.

Logical Statements:

The relational operators can be used to compare two VARIABLEs , or

VARIABLE w ith type REAL . The comparison is done between the f i r s t words

of the VARIABLEs or between the first word of the VARIABLE and type REAL.

The comparison operators are implemented as LOGICAL functions.

Other Subroutines:

The pac kages provide two additional subroutines:

1) Error handling subroutine (see our later discussion of Error handling).

2) Copy subroutine.

The copy subroutine implements the statement A B, A and B VARIABLEs .

Subroutine Names:

The names of all subroutines in both supporting packages are

composed of two parts:

i) The first three letters (the prefix).

ii) The last three or two letters (the suffix) .

All the routines in each package have a common prefix: TYL in

TAYLO R and GRD in GRADIENT. In order to avoid name conflicts , the

user should avoid using names starting with the above prefixes.

— 3 2 —

— .-- - -- -~~~~~~~

The sut f ix of a subroutine ’s name depends on the function or

o pe r a t e - n the supporting routine implements. In Table I, we give the

suf f i xes of t he routines implementing the “Standard’ functions. The

s u r : t x of a routine imp lementing arithmetic operations is given systematically.

The first letter describes the operator. A for + , S for - , M for ~~~,

D tor / , -and E for ‘
~~~~~ . The next two letters describe the operands:

first the left operand and then the right one . The letter R stands for

REAL, I for INTEGER, D for DOUBLE PRECISION and V for VARIABLE. So

MVV will be the suff ix of a routine that implements (VARIABLE) ( VARIABLE)

and DDV of a routine that implements (DOUBLE PRECISION)/( VARIABLE) .

The suffix of the LOGICAL functions implementing the relational

operators is composed of the two letters representing the operator and the

letter V. So . LT. is implemented by a function with suffix LTV. The

suffix of the routine implementing the norm function is NRM, Error routine - ERR

and copy routine - CPY.

2 . 4 .  Using the Package with AUGMENT.

Writing the Source Code:

In order to get derivative s of a function, say the Taylor series

expans ion of a function f , the user should write an extended ’ FORTRAN

function or subroutine that computes f. All legal FORTRAN constructs can

be used. All program variables which depend on the independent variable

should be declared as type TAYLO R, including the function itself. Program

variables which do not depend on the independent variabl e can be of any

other type .

— 33— 



- —.———---.-~-— ___-~~
-- - —

~~
. - - —

Externa l functions and subroutines can be used as part of the

computation . Functions must be declared as type TAYLOR. External

runctions and subroutines can be translated separately. However , one

has to c a ke sure that the number of computer words reserved for each

IA~~Lc- k variable in the external subroutine ( function) is the same as

the number of word s reserved in the calling routine.

The Description Deck:

The next step is to submit the source deck with the description deck

as ciata to AUGMENT. See Appendix C for the deck structure . The

description deck is supplied with the package .

However , since the number of words reserved for each VARIABLE

changes from problem to problem , this number has to be put into the

description deck each time. To make it easier , the description deck was

split into two parts: HEAD and BODY. The number of words to reserve is

inserted in between the two parts. This number should be an integer

constant. Column 1 in the card holding this number must be left blank.

Order of Differentiation:

The routines in both packages were designed to implement any “order ”

of differentiation without the need to be recompiled every time the “order ”

is changed. The “order ’ of differentiation is provided to the package through

a common block. In TAYLOR by COMMON/DEGREE/N and in GRADIENT by

COMMON/ORDER/N N is the order of the operator , that is: if N = 1

the package will compute function values only; if N = 2, function values

- 34- 

- ‘ - -  - - - ---~~~~~-- - - --- —-~~~~ ‘--- - - --



aicd irst :~ r 1vat ~vOs or first partial with respect to one variable); and

so on. The routines in the package do not check that there is enough

space provide- i for the VARIABLES. However there is a check that N > 1.

The or - icr can he changed at run time but care should be taken not to

cxcee : the’ number of w o r d s  provided for each VARIABLE.

iVc - r Kinc j  Spa ce:

Sc-me routine s in TAYLOR need work space and, since they are

designed to handle any order of differentiation, the work space has to be

provide-i by the user. The work space is provided through four common blocks.

CO~ 1N~C N/W OEl’j ,/WO RKi(N)

E ’ OM.\ ØN/WCa ’fN2/WO RK2(N)

COM~ic- N /\V ORK3/ WORK3ç N)

CO M Mc- N/-~VORK4/W O RK4 ( N)

N should be the highest order of differentiation used. The GRADIENT

pac kage does not require work space .

Using the Translated Routine:

The translated routine is a FORTRAN subroutine that gets as input

the value of its arguments and their derivatives, and gives as output the

value of the function and its derivatives. For example , in the Taylor

pac ka ge , if t is the independent variable , then t, 1,0,0. . . is the

Taylor series expansion of t. In the Gradient package , if x is the ~th

independent variab le then ~~~~~ = 1 and ~~~~~= 0 for i � j.ax
1 

ax ,

— 3 5 —  



_________________________________ - -  - ‘
~
‘ 

~~~~~~~~~~~~~~~~~~~ ~—.-—~
——-

~- —
~

-
~~~~~~~~~~~ , ,

In this example we compute the f i rs t  ~ terms of the Tay lor series

expan~ ion of :~~t) expicos (4t)) f ai ctan(sin 2 (t )) at the point t = . 5.

a) Ihe source c u—Ic :

I CY I (lii I r i -
~~” in I F I N  T

T ( - Y t  1JI~ T

F ( ‘n ~ } :~~F - c c u s ( 4 . ~’ T)  , - + A T A N ( S I N ( i  )* ~~ , )
F~f Tt) !~N
~ ND

L- ) The translated code :

SU11:OU T Tel ( T • T I’ l e ’L T )

C —~ r- r r  -no ~ - : -  t ’y ‘c,erT1l ‘.-‘FR~ I ON 4i —

c — - - — — - —  ir t ’ r c r - ~ rr~’ s i c s aor a - - n ont ; — — - — -- --‘

C T( ,Y L1FF i

RE(~L T Y L  1 P 1 1 < 9 ’  :~
C — — - -- — -— ~neca V(l F~i , l F - [ I TS
C 1 ( i Y I ( I <

k i _ r i l TYIn r ~ ‘/
C - — — — — - —  G I _ O l ’ L  c , - r - : ] i’~Fi I. i - r’ 
C TA Y I  Ot~

i- :E(, I T ( 1 ~ 1 ’ f L F ~’l 1 ( 9 )

C 7- -~~~~ —~~— — I IO ’Jfl 1 ~I I Ii F’F:iil:~.- , ’ M  -7- ~~~~~~~~

I T YI  uiia - ( 4 . , 1 T ’i’I TIll’ (I , I ) )
L T~T roe TYF  ~~l - - 1 ) ~~T Y I  T I l l  ‘ ( 1  . 1 )

C~~. T Y L r > ~
- ( T Y I _ T i - I F ’ ( l , l ) . T Y I _ T M F - ’ ( i , l ) i

C ( F . l T r i  S i e ’  ~ r , T Y L T i f l - ( i . 2 ) )
I T Y t F ’Y T  Y ;  T I l l-  ,7 1  • 7, 1 1  T Pl[’ ( 1

CE,I L. F Y I  Y e’ (T ’ i’l Ti1r’ (
~~’2 )~~Ty l i e ’ f l ( l , 7 ) )

C~~1I  1 ( 1  (P0 11-1 1 ( l , t ) , T Y L T T I F ( j , . ’ ) , T Y L F i F S l

0’) TO O le ’ - ’
C — - —  — — —  nE T OI - iN roi r - — -  -

)000 Cfl i T 111 1 1
C ( i  10  cry I: Et  1Y1_ RL I )
1:1 1 ) JI-~N

CN O —

~~~~~~~~ 

‘
~~ ~:

it’ - k 4’

‘
. V $ -

~ ~ ‘.~~
. .4 .

~~~~~~ -

—36—

- -



~~—-—— - - .. - -“ - -7- 

~~~

-

I
i :) Mill i:

fe ’- 1 < 5 ’ 1 • I - - ç~

,i iI i.)) F / I-
I - II’ - (IN a ; - - p .

~ ,
- (‘~)-f ~~~~ , l l i l - . - 1 -) - / W - ()

P Ii(’ 1t- - il IN /~ l(-
~ ,

I i - i t - - N / 1 10) - I- .l/I.J4 (‘p’)

1 (1 1 - - .
1 (7) - I .

p t e 10 1 f , ?
1.1 1 (U 0 .

I I [FlU (1 ,Fl ar)
- I P ‘

~ I (1) ~ (1 J ’ ’ i (I I ~ L 1 • 9)
f l I M- ’l (1 > ’ , ‘ r x (; I - I r TO t i lal- ’ - ~;[I - : 1E t [/1 - - - - e c i o n ’ /~ ~~~~~~ ‘~1~:’ , I - i, •

I ‘- “~~(I ‘- .))

~: T or

~
) L utp~ t :

‘(- --I ! I : T.c~~t Ill-~ ~Ii~
- ii ~ I ~~~~~ 1IIN

T~ •

• t - a’- : - i
-- .

.~ - m - ’ i N i
- .7 4’ - 1 0 1

- .

- - . t _ ’_ _ _ I ’ - - _ - - t - l .’

~ ~~~~~
-
~~~>: B we give a more comp licated example .

Error Handling:

In genera l the packages do not check that the arguments are within

the domain of definition of the functions. Checking is done only for division

by REAL , INTEGER or VARIABLE types. The packages also provide the

capabi lity to specify what constitutes division by zero . If the absolute value

of an argument to division routine is smaller t han or equal to specified

value , error c-c ur s. This value is set initially to 0 .0  by a DATA state—

ment. Howe ver it can be changed in runti ce through common block

GOPY A’ JL~~E 10 P~~.37 ... PEI~ 1T FUllY LE~1BLE ~~~DUCi W~

- -~~~~



_____________________________________________ ____________ - 
-.--~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ T-T~~~~~~

//,L:-u/ U-S . Ihe routines in the pac kage also check that the order of

i i t 7 - r f t n t ia t i c l ~ ts  at least 1 . In case an error is discovered , the error

r~-utuu ’  is ~1le I I s u t l ix  ERR) . The error routine prints error messages

- i n - a :~~r :~ r ms a - .-.‘a1~i na-~~. (which traces the sequence of subprogram

c a is I. k t u tne main pro-jr a : : ) and s tops.

a AN SI_FORTeL N [ - ~r t s :

- c’c ial care was taken to comply with some of the restrictions

ee r ie-cc ~ b / A .iI FOIU PJ~N, for two reasons:

-aí Some of the features in the packages could not have been

implemented otherwise.

L) Some of  the restrictions violated seem to us arbitrary and unreason—

afc le.

M-c re- ~~’er they do not exist in most production compi lers. 
-

Be low we give the list or non ANSI FORTRAN constructions used.

1) The set of ‘ standard ’ functions used is larger than the set in

ANSI FO i’ kJ-,N. Functi~mns whic h are not in the Standard are flagged

in the t un-ct i cn table 
~

y ~
- . The corresponding routines could be

ae let e - ,i or rrv-~rnfied to f it  cafferent systems.

2) Toe wor k space to TAYLOR is provided through common blocks

and there fore the common block sizes in the TAYLOR routines

would be different from the block sizes in the main program.

3 ) The walk back routine used in the error handling routine is non—

standard and has to be changed in other systems.

— 3 8 —

-.——

~

- -
~~~~~~~~~~~~ -~~~~ - ~~~~—~~~-‘ 

___ -‘

~~TT - -I~ -~
—-

~~
-‘

4) ih, ’ i- i /h . var iab le h iS appears in common block /ZERO/ and in

-ATA statement in ‘dce error routine).

‘) Na care W I S taken to comply with the standard concerning

exere-asions as subsc ripts to arrays .

o) ‘ihe fu a- ct io n ATAN~ is not inip lerri ented.

7) N- -
~- care was taken not to mix INTEGER with REAL .

~ aing the ackage ; Summary :

Assume one has all the package subroutines in relocatable form , so

the / can be use-a as i l I r-a ry routines. In order to get the derivative s of a

function f one has to do the following :

A l V~r~te a [OhTiTA N subroutine 3 (function) that computes the function

In the subroutine , -declare all FORTRAN variables that depend on the

inac- penclent variacles -as type TAYLO R (or GRADIENT) . The rest of the

var iables can be of any other type .

B) Inser t the number of computer words reserved for each VARIABLE

into the -description ne c - . .

C, oul- - ri l the source deck with the appropriate description deck as

data to A U G M E N T (See Appendix C and also [3]) .

D) Submit the output from AUGMENT as data to the FORTRA N compiler.

E) Call the subroutine with the desired arguments.

‘ One can use main programs too but that is a more complicated way of doing it.

—3 9—

_ _ _ _ _ _ _ _ _

R e m a r k s

1) AJ ’.v~ ys re member that the ini t ial values i f Lne der ivat ives of the

input v ,~r ra bles have to be pro - 7-’ r-c ed toe- .

/ 1 All the restr ict ions that apply to the use of AUGMEN I apply to the

paeka-- ; - - -s.

3) AUGM ENT does not translate I/O and DATA statements . Their

translation has to be done by hand.

4) This report is by no means a substitute for AUGMENT user informa-

tion manual (M RC TSR ~l469 [3]). The user should be familiar w ith that

repo rt .

Acknowledgments

The author is indebted to Dr. C. de Boor and Dr. S. V. Parter for

many stimulating discussions , constructive criticism and valuable sugges-

tions. The author wishe s to thank Dr. F. Crary and Dr. L. Landweber for

critical reading of the manuscript and for many valuable suggestions.

- P3—

_ _

- - ‘~~~~ -~~~ .. - 7 -~’

- -.~~~~~~- —‘-- —--
~~
‘-:

~~-- -‘ ~~~~~~~~~~~~~~ -.--- -

}
~e fere : icc s

I. Barton , D. , tVi l ler , I . M. aed Za har , R . 7. M. . Taylor Series Method for

Ordinary Diff erentia l Equations. An Evaluation. Mathematical Software ,

1971 , Academic Press , Inc . . ~-Jcw York and London .

2 . Braun , J. A. and Moore , P. E. , A program for the solution of differential

equations using Interva l Arithmetic (DIFEQ) for the CDC3600 and 1604 .

MRC Tec hnical Summary Report -- goi , June 1968.

3 . Crary . F. D. , The AUGMENT Precompiler : I. User Information .

MRC Tec hnical Summary Report 1469 , December 1974 .

4 . Crary , F. D. , The AUGMENT Precompiler: II. Technical Documentation ,

MRC Tec hnical Summary Report ‘1420 , October 197 5 .

Knapp. H. and Wanner , G. LIESE II. A Program for Ordinary Differential

Equations using Lie-Series , MRC Tec hnical Summary Report ~1O08 ,

M a r c h 1970 .

6 . Krasnose l~skii , M. A . et . al . , Approximate Solution of Operator Equations ,

Wo lters-Noordhoff , Groningen, 1972 .

7 . Moore , R. E. , T he Automatic Analysis and Control of Error in Error in

Digital Computation, Vol . 1, Editor L. B. Rail , John Wiley and Sons , Inc .

New York 1965 .

8 . Moore , R. E. , Interval Analysis, Prentice Hall 1966 .

9. Pugh, R. E ., A language for nonlinear programming problems , Mathe-

matica l Programming 2 (2) 176-206 , 1972.

10. Reiter , A. Automatic generation of Taylor coefficients (TAYLOR) for the

CDC 1604 , MRC Technical Summary Report #830 , November 1967 .

—-I l—

.~

11. Reiter , A , and Gray J ., Compiler of Differentiable Expressions (CODEX)

for the CDC 3600 , MRC Technica l Summary Report #791, December 1967 .

1~~. Wertz, H. I. , SUPER- CODEX : Analytic Differentiation of FORTRAN

stateme nts . Aerospace Corporation , Los Angeles , California. Aerospace

report No TOR-0 l72(932 0)- 12 , June 1972 .

13 . Kuba , D. and Rail , L. B., A UNIVAC 1108 program for obtaining rigorous

error estimates for approximate solution of systems of equations, MRC

Technica l Summary Report #1168, January 1972 .

14. Gray, J. and L. B. Rail, NEWTON: A general purpose program

for solving nonlinear systems. MRC Technical Summary Report

#790 , September 1967 .

15. W. Rudin, Real and Complex Analysis. McGraw -Hill , 1966.

I

— 42—

_ --

_ _ _ _ _ _ _ _ _ _ ____________ - - ~~~
“

Appendix A

O~’cu r r (-r l - :e l’e lat ioas for Taylor Series Expanslo

- 1) Z — Y ± Y

[Z]~ = {X]
1

± [Y]
1

j 0,1 ,.. -

0) Z = X - Y
J

[Z]~ = - NJ-k
0 ,1,...

c) z = x / y
J— l

[ZI = l/Y j [X] -
\‘ [Zl~ . [Y] k~ ~

= 0,1 ,.. -
k = 0

d) Z = X’ I integer

1) 1 > 0 I Ls C tO ,1}

[Z] 1 = [H -
~~ ~~

I~~
J = 0,1~~.. -

S=o
2) I = 0 : Z~~ 1

3) I < 0 [Z]~ = [l/X~~]~ J = 0 ,1,...

e) Z = a real constant
I- —i

[Z~ = i/x - \ ((a(J-k)-k)/J) . [Z1~~ ~~ k = 1,2,...
k = 0

f) Z = X ~

[Z]~ = (ExP(Y LOG(X))J~ ,i 0,1, . . -

g) Z = LOG(X)

[Z] 1 =

J— l
[Z}~ = l/X -

~
((J
~
k)4)[X}

J k ~
[Zi

k J = 2,3,...

h) Z = EXP (X)
J— i

[Z]
~

((J
~

k)/T) [Z] k
- [X] k 1,2 , . . .

k=0

— 13—

-‘~~~~~~ - ‘ . - _ _ . _ - _ -_ - -


~~~~~~~~~~ _ - ‘  ~~~~~~ -‘ - _- -~~~~ - -~~
_---~~ 

~~~~~~~~~

- -

~~~~~~~

1) Z = SIN(X ) ,  W = COS(X)
I— I

[zl~ k=O 
k J k  J = 1,2,...

= - 
\ ( ( J

~
k)/J ) [Z] k • [X ]

k=0 J-k

Z = SINH(X) , W COSH(X)
J:1

IZ] J 
= 

~~~ 
((J_ k)/J) [W] k

-

— 0 1 = 1 ,2 ,. . .
J—1

[W]~ = “ ((J- k)/J) . [Z]~
. [XIJ k

k = 0

k) Z = ATAN (X)

Let V = X 2 + l W = l / V

[Z}~ ~((J-k)/J) [Wi k
. IXIJ~ k

Z = ASIN(X) , Y = ACOS(X)

Let V = 1 - X 2 W = l/~~~~
3— 1

[Z}~ =
~~~~~

J_ k)/J )[W 1k 
- [X} J_ k 1 = 1,2,...

[Y]~ = -~~~((J-k)/J) [W} k [X} J k  J = 1,2,...

m) TA N(X) = SIN(X)/ COS(X)

TA NH(X ) = SINH( X)/COSH(X)

—4 4—

_ _  ~~--—~~~ - - - ~~~~~~~~~~~~~~~ - - “  -- - -~~~~‘-- - - — ~~~~~~~~ - - - —- -~~— - - -~~~~~~~~~~~~~~~



Appendix B

Examp le

the fol lowing exa mple was take : from a homework assignment given in

an optimization class at the University of Wisconsin . This example is simple

but quite typical of problems that arise in applications . We have to compute

the grad ient of a function which can be easily described by a computer program ,

but whose explicit expression is quite hard to obtain . W hen one tries to com-

pute the gradient numerically, one runs into converg ence problems. In this ex-

amp le we show how easy it is to get the gradient of such a function by using the

GRA DIENT pac kage .

The Problem

We have a missile on the north pole of a ball of radius 1 and we want

to f ly to the south pole . (T he units are chosen in such a way that all the con-

stants are 1). Because the problem is symmetric we only have to solve a two

dimensional problem .

The motion equations are :

d 2r r
= - 

3 + u  r = ( x ,y)
dt 2

Let t = aT then

~~ 

~~~ 
r

~~~~~~~~

2
+

2
)
2/

~~~~~~ 
~~~ul~~~ 

= af (x ,y,~~,~~,u1,u2
)

1/ 
2 3/2 -

—4 5 — 

-- -~~~~~~~~~- - -



l) i sc ret ize  by the Euler method

(X k 1 ~~ / X k( 
~k+l

= 

~‘k 

+ h af(xk
,yk ,~ k,T1k,

ul k , UZ k )

\
\
\ 
1k+l) ~~~‘~k

k = 0 ,l, . . . ,g  h = 0 ,l.

Finally, solve:

mm h(a ,u ,u ,u1 8,u 8 ,
u

1 ,u,1, ,0 , 2, ,9 L.,9

= {Z0[(x10
)
2 
+ (y10 + J)

2 
+ (~ lo)

2 
+ (110)

2
i + (u~~0)

2 
+ (u 2 0 )

2

+ (u
1,8

)
2 
+ (u2 8

)2 + (u
1 9

)
2 
+ (u

29
)2 + + 2 

20 
2x 5 +

All u .~~~0 u ,~~~0 for l < j < 8 .
1,) 2 ,j —

Use the variable metric algorithm to solve the above minimization problem.

— 46—



owe — . .~—- - - --—--.,
~~

-- 
~~~~~~~~~

—.-.-- --—~
-

1. INPUT DECK

~ X ~T ~~I 3 . A i j ~~ P 4 E N T

~A D~ G~~. c I t F . D r n C — C R D / H r A 0

aA D D • r r . D E 5 c — G R D / ~ 3D y
•3ESIN
:FcR.:~ rn;r i

r ’-~ -~~: c i r G R A D I t N I (A — H , 0 — 2 1
rLin CNT FU~.CTI0W FLTFN (AL FA ,UD ,U8 ,U 9)

~~~~ 5r~ i UO (2). U8(Z).u9 (2~~,u (Z.1CI, X (11~ .Y(11) ,~ y (3.~ ),Vx (fl)

V Y ( . )  :C . C
V Y ( . .  ) : C _ ~~
-4: •

U ( Z . X  ~~~~~
10 COMT -int

U ( 1 ’~~)~~U 0 ( i I
U( 2 ,~~) :UC 121
U ( 1 .~3 ) : L J .. ( i i
U t 2 ,~~)~ iJSI 2 )

U (. ,~ C):u3(2)
002C I z l , 1 L
PS: (X I I ) .  s 2 .Y I I ) . . 2 )  ‘‘1.5
)‘(I.j):X (I).H .ALFA .vx( ~~)

VX(I.~~):vx ( I)•HSALFA 5( u (1.I)— X (II/R sp
VY C  I+ . I :VY ( I) ‘H .ALFA • (U (2.13 —Y ( I)/RS)

20 CONTINUE

$ •
S •(A~.r A..~ 3/ 1 0. 0  ‘20.0/1 X ( 6 ) .s2 .Y (  G).. 2)

R E T URN
C ND

SEND

O~P? M&~U~LE TO D~C 1X~ES hOT
~EP~~ T FUllY ~~~~~1E P~Oc)JCT1U~

‘-47 —

_ _ _ _ _  -- - -- - - --



Remarks.

1) @ XQT MRC*LIB.AUGMENT starts the execution of AUGMENT.

2) @
~ DD GK*DIFF. DESC-GRD/ HEAD, adds the card image of the HEAD part of

the description deck into the run stream .

Simi larly f~~DD GK* DIFF. DESC-GRD/BODY Adds the BODY part .

3) The function is trans lated into a subroutine . The function and gradient values

are stored in the last argument of the subroutine .

4) The translated subroutine can be used to compute function and gradient valu~is

or function values alone. (See Order of Differentiation )

~
) T he rest of the com putation details are omitted .

_ _



V.—- ---—- — ---
---— 

~~~~~~~~~~~~~~~~~~~ 
— -,

~~~~=~~ 
- — —

OUT hI t’ - I ~ A l  c ;~. l l7.1

SUBROUTINE FL T FN (ALrA.ur ,Ua. U 9 , GRDR L T)
C :: :: PRCC E SS EC SY A UG M E N T .  VERSIO N 4H :::::
C T PIPC7A ~~Y ST C. Q A G E  L O C A T I O N S
C CP~~ rr ’~i

P I t A L  G P C T M P ( 3 . 3 )
C L O C A L V A R I A 3 L E S

I N T E G E R  I
C C PA C I E N T

P EAL 1 - 4 ( 8 ) .  R S ( 8 ) .  U(3.2.1’C). VX (8.11). VY (8.113. X (B •11 )v Y (B .11).
• 3 R G R [ S ( 3 3

C C L3~~AL V A R I A S L E S
C GI~A~~IENT

PEA L A L F A ( & ) v  U Q ( 3 . 2 ) .  U 3 ( c , 2 ) ,  U9 ( 8 . 2) ,  G R D R L T ( 8 )
c :::z: T R A ~.SLA TED P PO CPA M

CALL GRO FR (C.C.X (1.1))
CALL G R C C F R  ( 1 • S . Y ( ~~.1) )
CALL G RDCF R  ( .C.VX (1,1))
CALL GRO CE R (3 .0.V Y (1v1))
CALL G R CC FR ( . 1 .H)
CO 10 I:1,IE
CALL GR O C E R (C.C.U (1.1,I))
CALL GRO CE R (O.O ,U(1 ,2 .I))

10 C O N T I N U E
C A L L GRO C? Y (UC (1.1).U(1.1,1))
C A L L  G R O CPY (UC (1.2).U(1.2,jj )
CALL GR C CPY (U3(I.1)tU (1.1.9))
CALL GRO PY (U3 (1 ,2 ),U t1 ,2, 93)
CALL GR O PY (U3( 1.1I.U (1.1,j.C))
CA L L  GRDCPY (U$(1.2).U (1.2 ,10))
CC 20 I:1,1
C A L L  G R O E V I  C x (1,r ).2 .GRD TMp C1,1,)
CA L L  GR OE VI C Y ( 1.11.2 .GRD TMP ( 1.2))
CALL G R O A V V  (GR O TM P (1.1) ,OROTMP (1.2 ).GRDTMPC1.2 ))
CALL GRO VR (GRD TMP C1. 2 ’•l.S,RS)
C A L L  G R O M V V  (H ,ALFA .GR O1I P (1 ,1) )
CALL G R D M V V  (G~~CTMPC1.1 ).Vx (1,I) .GROTMP (i,1) I
C A L L  G R O A V V  IX (1.I) .CRGTM P (1,1),x (1.I+1 ))
CAL L  G R O M V V  (H ,ALFA. CR CTMP(1,j))
C.LL GROM vV (GRCtM P (1,1) ,V y (1 ,I) ,3ROTMP( j .1))
CALL G R D A V V  (Y(1,I) .CROTMP(j,1) ,y (1,t+1-) )
CALL  G R O M V V  ( H , A L F A . S R D T M P I 1 , 1 ) )
CALL G R C C V V  ( X ( 1 . I ) , f l S , G R D T M P ( j , 2 ) )
CALL G R D C V V  (U (1.1.I) ,CRD TM P (1,2) .CROTIIP(i.2))
C A L L  G R OMVV I G R O T M P ( 1 . 1 )  . G R D T M P  C 1 , 2 3 . G R O T M P ( 1 . 2 ) )

- C A L L  G R O A V V  ( V X ( 1 . I ) . C R D T M P L 1 , 2 ) , V X ( 1 , I . 1 ) )
CALL G R O M V V  ( H,A L V A ,G R G T M P ( 1 , 1 I )
CALL G R O 3 V V  ( Y ( 1 , I ) . R S . C ~~C T M P ( j , 2 ) )
CALL  G R O S V V  ( U (  1 .2 .1)  . t R D T M P ( 1 t 2 )  . G R DT M P ( 1 . 2 1 )
CALL G R OM VV ( G R D T M P ( 1 . 1 ) . C R O T M P ( 1 . 2 ) . G R O T I 4 P ( j , 2 ) )
CALL GR D A V V  (VY (1 .I) .ORDTMPI1. 2) .VY(1,I .13)

COPY AYAILA~LE TO Pt!C C~JES NOT
PERMIT FULLY LEGIBLE FRO~ CTWW

— 4(3 —

____  ____________________________________________ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


20 CON T I N U E
CAL L G R E E V I (X l1.11), 2 ,GRD TMPI1,1))
C ALL G R 3 A V ~ I VI 1.1 1) ,1 ,GROTM P I1 .2))
CA LL C R O E V I (G RCTM P (1,2I,?i ~~POT M7(1,2))
C A L L CR 2~~VV (G ROT ~~P (1,1II ~~~LT M P (1,2) .GRDTM PC1.2)
C A L L C R2:V ~ (VX (1.1L),C.G R CTMP (1 ,I) I
C A L L 3 R~~A V V C G R D T 4 P (1.2),GR~~TM PL1,1) ,GR QTMp (1 ,1))
CA LL GRG :vI (VY(1,11).2,GPO TMP(1. 2fl
C A L L C P~~A V V I G R C T M P C 1 , 1 I , C R O T M P (1 . 2 1 . GR O T M P U . 2) I
C A L L C R L ~~?v 12 0 .,CRCTMr (:.2) .GPDTMP (1.2fl
C A L L CR~~~V (U3C1.1).2,G~3JTMP (1.1))
C ALL CRC.i VV ICR TMP(1 ,2),CRCTMP(1,1J,GRD THP(1 ,1)I
C.L L CPC VI (J ~~C 1.2).2 .3R3TMP(1.7)I

A L L C R C~~Vi’ (. 3~3TWP(1 ,1).OR .~TMP(1 ,2 j,GRDTfl P (1,2) I
CALL CRC V 1U8 (1.1),2.GPDTMD(1.1))
CA LL CR CAVV , C ? C T M r C l , :) . C E L T M E I I , 1 3 , C R D T H p (1 , 1))
C A L L CRC :V : 1u811.2 .2.CRDTMPC1.Z))
CALL C R O &V V (C~~C T M r C 1 , 1) ,cRCTMp cx,2),cRcTN p(1.z))
CALL G R Q C V I U~~(’.,j),2.C P TM P I1 ,1))
CALL G R C &V V CGRCTMV(1, z).GR3 TMPI 1.1) ,GRDTNP (1.1)I
CALL C R O E V I I U . I C . Z ,C. 3RCTM ° (1~~2)
CALL G R C A I V (CRC 1’4P(1,1I.OR ~~TMp(1 ,2) ,GRD TMp (1 ,2)
C A L L C R C VI tALFA,L. c~ C rMrct ,1II
CALL GROC ’IR (GRC ~~~P(1 .1).1O.0.GPDTMP (I.,1.))
CALL C R C A VV (GR OIM P I 1.2),GR3TM P (1 .13 ,GRQTM P (1 ,1)I
C A L L CRCEV I C X (1,S3.2,CRDTMP (1.2))
CALL ~~~~EV1 C YC 1.6h2.GROTMPI1.3))
CALL G R D A V V (GRCTMP(1.:),GR ~~TMP(1,3),GRgTNP (1 ,3))
C ALL G R DO ~~v C 2 0 . C . G R DT N P (1 . 3) , G R D 1 N P(1 ,3))
CALL G R O A V V (GRDTMP(1 ,1).GR TMP (1 ,3),GRDRES)
CO TO 3 L C C C

C ———— — RETURN CODE
30000 CONTINUE

CA LL G ROCP Y (G RORES, GR D RL T)
R E T U R N
END

COPY AY~IU9~E TO ~OC ~&S NOT
PERMIT FULLY LE~tBLL P~8DU~TW~

— 50—

__________ ‘_-_ ___~~~~~~,. - -- - - ~~~~~~~~~~~
-— - : - -

-t
;,~)lJ(’ . (~~i -~. C

Dec K A r r a r ~ge r e ~~t

The d a t a d e c k read by A UG P’LN T ha s th e s t r u c t u r e sho w n in ‘ t h e

f o L L o w i n g a i a g r a r :

——

/ Source Deck / l
, I t

/ I I

/ * B (G I N
I I

I D e s c r i pt i o n D e c k
/ I ,

I I I
I I
I I

A t t h e c o n c L u s i o n of p r o c e s s i n g , the t r a n s L a t e d p r o q r a m d e c k s

are in the o u t p ut f i L e in 80 c o L u m n card lmaoe f o r m a t .

T This page is taken out of: The AUGMENT Precompiler 1. User Informa tion .

Fred Crary [31-

COPY AVAJ LA~LE TO IJDC D~JES RU~PERMIT FULLY l.EGI8LE PRUUUCT I~

_ _ _ _ _ _ _ _ _ _ _

- — - - ‘ - t~~~~~-~--: ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
‘‘

~~~~~

u ’:~~:J~dSI Fi E: .  
______

‘- o c~~~-~ :*’ ~ . OF ~~. - S P~ .E Wb.n 1J•i• F,I~.,.dI

D~~DñDT r rv ~~~~~~~~~~~r in~i P ArE  READ INSTRU CT t ON S
I ~ B~~?OR E COMP LE TING FORM

T~~~~I~~c m ’  .. w S ~~S 12 G O V T  A~~C E S $ I ON NO ~ FC IP I IP4T ’ ~ C A T  ALOO NUMet ~

I’ — 
_________ _____ ______________

4 ~~ I ~f ~~~ S~.bW (.I S V P E OF ~ E Pc ~R ~ P E R I O D  co~~~ p ro

A L I (  ~1A ~ IV 1 L I [ R t  ~. F  IA IO~ . U ~ 
Summa ~~ Report - no specific

- 
reporting period 

_____

~~ ~~~~~~~~~~~~~~~~~~~ 
6 P E R F O R M I N G  ORG RFPaR ~~~N MB1R

- — 7 A u T n O R ( .  8. C ’ N T R A C Y  OR G R A N T  NUMBER( S)
— ‘ L -  -

L
~~~

(2 9 -7
~~

C
~

0O24
~~

7

8 PERF (R~~~O JRG A NIZA Tl O N NAM E AND ADDRESS ¶ 0 PROGRAM EL~~MEMT . PR OJE CT TASK

Mathematics Research Center , University -:)f A R E A S W O RK u N IT NuM BERS

~— l0 Walnut Street Wisconsin
Madlsor.1 W isconsIn 53706

I I C O W T R O L L I NG O~~PiCE NAME AND ADDRESS (2 R E PO R T ~~~~~~~~~
—

U. S. Army Research Office (‘
//
[‘ ‘ o’~-ember j 9 71

-

P. 0. Box 12211 -
~L.—/--- -TT - -I IIUmER ô ~ P AG ES

Research Triangle Park 1 North CarolIna 27709 -
~~~

~ * M O 4 I 1 C R ’ 4 G %G EN~~~~NAME S A O OR~~S$(SI df U.rw t tro. , Controlling Ollic.) 15 SEC URITY CLASS ,  (of t?,i. r.pon

( / / - - 
UNCLA SSIFIED

I I __________________________- 

/ 
-“ 

~~
- - 

- ~~ A , . - ,~~‘ / , / - IS.. D EC L A S 5 I F I CA T I O N / D O W N G RA ~~~ iO

- - - -- - 
SC HEDULE

4 Th P~~~~~~~I O ~~ S T A T E M E N T ( o t t h S . R.Pert) 
-

A pn-rcvec~ for public re~~as e; dis~~1bution unl±mited~ 
~~~~~~~ - -

~

_‘
/ h~-~--’~ — T . ~~

‘

—

o s r . I B U T IO N ST A T ! M E~k..tCOI~~~
.b.,tr.ct .J,t.,.d In Block 20. II diff.r.nt Iro~, R.port)

~ S .~ PC’~~F U E M T A R Y ~. O 1 E S

9 I(E’-’ *O ° O S ‘ ‘ - I . on ~~~~~~ .Id, It nec..INy wd id.nIIIy by block n,m~b.r)

actor n;l’- :cn~ t icns

A~ t~ r~-~t z c dif -rentlation

4 9 S ~~P A C T (Conrino . ~~~~~~~~~~~ mid. ii n.c.si~~ ~~d id.ntiiy by block nun,b.r)

A method ~cr the auto:~ atic differentiation of computer functions (subro u-
tln(: — w r i t t o n ir~ a high level language is discussed.

~ tncory is developed to show that most functions that arise in applications
can be dif:e~e nt iat ed automatically. I t is shown how one can take a FORTRAN
f- :rv tv~n (subroutine) and , with the aid of a precompi ler , obtain a FORTRAN s ub-

tine that computes the original function ~nd its desired derivatives.
Implementation of two types of differentiation is described:

.A1.~iomati c ~~iylpr series expansiop p~ FQR~’RAN programs.
Autc natic ~raciient calculation Ui F URTitA I\J funct ions.

DO ~ 1473 EDv- ~~~ O~ 1 N O V 6 5 I S O B S O L E T E UNCLASSIFIED 2 - -

~~ ~,)‘ I
S E C U R I T Y C L A S S I F I C A T I O N or 1HIS PAGE (W? ,en ~at• En t q d) I -

, .—

________- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -..‘—. ;

~~~ 
-

U~~ ~ASSIFIED

- c C L A S S (P I C A T I O I 4 OF Y N I S PA G E 4~ Dai. E, ,r .r .d .

REPORT DOCUMENTATION PAGE BEFOR E FORM
¶ 1(~~cJ’ 1 N U M S~~R

12
GOVT A C C E S S I ON NO. $~ R(C I• I I N T S C A T A L O G NUMSER

1, -
— -

4 T I T L F ,d S~ b~~i(.~
5 TYPE OF R E PO R T S PERIOD COVERED —

~ A L IC- ~- I A i i C) I f ’~ Id- EN1IA1IuN OF -~ 0 ~~ UTE~
S u m m a~~ Report - no specific

— reporting period
I- ~<u G ~~ S - - 6 P E R F O R M I N G ORG. REPORT NUMBER

7 A~~ T i4OR(.) -
8. C O N T R A C T OR G R A N T NUM BER(.)

/~
/ /~~ D~~G 7 5- C - 0 02 4

9 P E R F O R M I N G O R G A N I Z A T I O N NAM E AND ADDRESS 10. PROGRAM EL~EMEwT. PROJECT . T A S K

Mathematics Research Center, University of
AREA 8 wo Rk UNIT NUMB ERS

61O Walnut Street Wisconsin
Madison~ Wisconsin

-37 06
I I CONTROLL.IM G OIPIC! NAME AND ADDRESS - - 1 2 REPORT 9 At ~~~ - -—- i

U. S. Arm y Research Office ‘:o’,-ember 1976
P . O. Box 12211 ~—L_—-’ it-- MUMBEP -or ~ A Gci

Research Triangle_Park~~ No rth Carolina 27709 51
it MDW (’ OP ING -~G1~~~V P4.ANE S AODR ~~SS(li ftlf.,.n r Ivo.’ Cont roll Ing OffI c .) 15 . SECURITY CLASS. (of 161. r.pofl)

7 :
- - -

- UNCLASSIFIED
I ~ I I t -~- _ ______________________-

1 — - -~ ~ ~
- I - - / / ~ - - IS. D E C L A S S I F I CA T I O N/ O O W NG R A D I N Q

- I — SCHEDULE
- - —-- - - -- --- . -

4 R-J T IC N S T A T E M E N T (of thI. R.port)

Approved ~?r publIc re1ease~ distribution un1jmlte& ’
~.~/

-
-

7
-

~~~ 
— - -

I 
/ /

17 D I S T R I B U T I O N  3 T A T EME\~ Ltaji4 ~~~ .b.t,acf IUL•?•d In Block 20. II dIIl. rini Iro,~ R.port)

9 SuP~~L E M E ~~~ A~~ ’ N O T E S

19 KEY  W O R D S  (Cor,rI,-,.,e on rere ,.m .Ide if n.ce•aar). -,d Idenlily by bI~~ck -um,b.r(

Factor]ble func t Ions

Automat ic - hf fe ren t ta t i on

20 A B S T R A  rInu, ~, rave,.. mId. I! n.c..Iaa y ,d ld.ntiiy by block numb.t)

A m e thod for the automatic differentiation of co~;:/ute r functions (subro u-
t ines) wri t ten in a :iigh level language is discussed .

A theory is developed tI show that most functions that arise in applications
can br~ differentiated automatica lly. It is shown how one can take a FORTRAN
‘ -~n~~tu~n (subr ~/utine) and , with the aid of a precompiler , obtain a FORTRAN sub—
n ut i ro t hat computes the original function and its desired derivatives.

Imp lem ’r .t iO - n of two types of d ifferentiation Is described:
;) Autornat i  iylor ser ies expan. ;io~ p~ FQRT RA N programs.
- 1 Auto ma ‘ i- -~Jra rJicnt calculation ot IURTXIAIN funct ions.

C) 
- / T

DD , ~~ 
1473 E D I T I O N  O~ I N O V 6 5  IS O B S O L E T E  

-~~~ UNCLASSIFIED ,/ ~~ _ . .  ,~ .“~
‘
~ J )

S E T  J R I T Y  C L A S S I F I C A T I O N  OF THIS PAGE ($S,.n Data Enl.,.d )

- -- ~~~~~~ - --~~~~~~ — -- -- - - -  ~~~~~~~~~~~~~~~~ --~~~-- - -~~~ ~~~~~~~~~


